
www.manaraa.com

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.18, August 2012

30

An Analysis of Vertical Splitting Algorithm

Ruchika Bhaskar
Research Student

Computer Science Department
Rajasthan Technical University Jaipur, Rajasthan,

India

Rakesh Sharma
Associate Professor

Computer Science Department
Rajasthan Technical University, Jaipur, Rajasthan,

India

ABSTRACT

Distribution design involves making decisions on the

fragmentation and allocation of data across the sites of a

computer network. Vertical splitting is the process of

subdividing the attributes of a relation to generate fragments.

In this paper, we propose an analysis for vertical splitting

algorithm using prototype approach. This approach starts from

the attribute affinity matrix and generates initial clusters based

on the affinity values between attributes. Then, it uses the

database according to optimal splitting solution to produce

final groups that will represent the fragments. Then we

analysed these fragments according to their contribution level.

The result is generated that shows how to find optimal

solutions.

Keywords

BEA, Distributed Database, Vertical Fragmentation.

1. INTRODUCTION
Distributed and parallel processing on database

management systems (DBMS) is an efficient way of

enhancing performance of applications that work on large

volumes of data. This may be accomplished by eliminating

irrelevant data accessed during the execution of queries and

by reducing the data exchange among sites, which are the two

main goals of the design of distributed databases [2].

The primary concern of distributed database systems is to

design the fragmentation and allocation of the underlying

database. The designing of distribution involves making

decisions on the fragmentation and placement of data across

the sites of a computer network. The first phase of the

distribution design in a top-down approach is the

fragmentation phase, which is the process of clustering into

fragments the data accessed simultaneously by applications.

The fragmentation phase is then followed by the allocation

phase, which handles the physical storage of the generated

fragments among the nodes of a computer network, and the

replication of fragments.

2. RELATED WORK
Most of the vertical splitting algorithms have started from

constructing an attribute affinity matrix from the attribute

usage matrix: the Attribute affinity matrix is an m x m matrix

for the m-attribute problem whose (i, j) element equals the

“between attributes” affinity which is the total number of

accesses of transactions referencing both attributes i and j. An

iterative binary partitioning method has been used in [8] and

[5] based on first clustering the attributes and then applying

empirical objective functions or mathematical cost functions

to perform the fragmentation. The concept of using

fragmentation of data as a means of improving the

performance of a database management system has often

appeared in the literature on file design and optimization.

Attribute partitioning and attribute clustering have been

studied earlier by [4], [3], [6], [8], [9] has discussed the

implementation of a self-reorganizing database management

system that carries out attribute clustering. They also show

that in a database management system where storage cost is

low compared to the cost of accessing the sub files, it is

beneficial to cluster the attributes, since the increase in storage

cost will be more than offset by the saving in access cost.

Hoffer [6] developed a non-linear, zero-one program, which

minimizes a linear combination of storage, retrieval and

update costs, with capacity constraints for each file.

Navathe et al [8] used a two-step approach for vertical

partitioning. In the first step, they used the given input

parameters in the form of an attribute usage matrix to

construct the attribute affinity matrix on which clustering is

performed. After clustering, an empirical objective function is

used to perform iterative binary partitioning. In the second

step, estimated cost factors reflecting the physical

environment of fragment storage are considered for further

refinement of the partitioning scheme. Cornell and Yu [5]

proposed an algorithm, as an extension of Navathe et al [8]

approach, which decreases the number of disk accesses to

obtain an optimal binary partitioning. This algorithm uses

specific physical factors such as number of attributes, their

length and selectivity, cardinality of the relation etc.

Navathe and Ra have developed a new algorithm based on a

graphical technique [7]. This algorithm starts from the

attribute affinity matrix by considering it as a complete graph

called the “affinity graph” in which an edge value represents

the affinity 1-4244-1364-8/07/$25.00 ©2007 IEEE between

the two attributes, and then forms a linearly connected

spanning tree. The algorithm generates all meaningful

fragments in single iteration by considering a cycle as a

fragment. A linearly connected tree has only two ends. By a

“linearly connected tree” we imply a tree that is constructed

by including one edge at a time such that only edges at the

“first” and the “last” node of the tree would be considered for

inclusion. We then form “affinity cycles” in this spanning tree

by including the edges of high affinity value around the nodes

and “growing” these cycles as large as possible. After the

cycles are formed, partitions are easily generated by cutting

the cycles apart along “cut-edges”. In this paper we will use

an algorithm to cluster the database i.e. Bond Energy

Algorithm (BEA). And use these cluster affinity as input to

find final fragments using PARTITION algorithm. Then using

prototypes we reach to the goal of reducing response time of

query using fragmentation and show the mathematical result

for proof.

3. BACKGROUND OF SPLITTING

ALGORITHM
Today, mostly centralized databases are used to store and

manage data [11]. They carry the advantages of high degree of

security, concurrency, backup and recovery control. However,

they also have the disadvantages of high communication costs

www.manaraa.com

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.18, August 2012

31

(when the client is far away and communication is very

frequent in between the client & server), unavailability in case

of system failure and a single source bottleneck [3].

Research conducted in 1991 for distributed databases

predicted a huge shift from traditional databases to distributed

databases in the coming arena, due to organizational needs to

manage huge amounts of data [11]

The telecommunication sector also wants to embrace this

technology of data distribution. But before distribution of

data, fragmentation is a very important and critical task that

needs to be done.

Most of the telecom industries are using centralized technique

in storage of their database. Centralized database has its

disadvantage of high communication cost. Some data is

unavailable due to problem in server. To resolve these issues

we are moving from centralized database to distribution of the

database.

4. ANALYSIS OF ALGORITHM USED

FOR SPLITTING THE DATABASE
The vertical fragmentation proposed in this paper is executed

in following manner. (1) When a query uses attribute from a

relation its value is true (2) Information about databases and

query are notified before fragmentation process. (3)Query

consists of attributes. The use of attribute means accessing to

the value of an existing attribute without any side-effect. Our

fragmentation is composed of attribute fragmentation. A set of

attributes defined in a relation is vertically partitioned into

attribute fragments on basis of application queries like

1. Normal

Find subscriber via peer_id and area

Find Narrative

2. Recharge

Find subscriber via peer_id and area

Find subscriber_id

Find Narrative(units)

Update Narrative(units)

Update subscriber (Sub_Param1, 2, 3)

3. Balance Inquiry

Find subscriber via peer_id and area

Find Narrartives etc.

Figure 1: Sample Queries of experiment

After, the attribute fragments are generated, the attribute

fragmentation is executed on basis of queries .Also, a query

can access attributes of other relation on a database hierarchy.

To reflect these characteristics of queries, we calculate

QA(query access) matrix, FA(site access) matrix and

AU(attribute usage) matrix. In FA matrix, QA matrix contains

all explanation in of attribute used by Sites of different

relations and to represent attributes usage by different queries.

4.1 QA matrix:
QA (Query Access) matrix represents the use of attributes in

application queries. Figure 2 and Figure 3 is an example of the

QA matrix for subscriber relation and Narrative relation used

as database in this paper.

1 1 1 1 0 1 1 1 0 1 0

1 1 0 1 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

Figure 2: SUBSCR QA Matrix

1 1 1 1 1 1

1 1 1 1 1 0

1 1 1 0 1 0

1 1 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 1 0

0 0 0 0 0 0

0 1 0 1 0 0

Figure 3: NARRATIVE QA Matrix

Each row represents queries and each column represents

attributes Q1-A1, Q1-A2, Q1-A3……Q1-A11 are queries

about SUBSCR relation. And in the similar manner for

NARRATIVE relation (in Figure 3). The entry "1" indicates

that the query uses the corresponding attributes. Attributes of

other relation accessed by query can be represented in QA

matrix. For example, Q1 accesses to not only sub_id, peer_id,

status, language of its own relation SUBSCR but also

narrative_id, sub_id, narrative_type, and unit_type of relation

NARRATIVE.

Combined AQ matrix (CAQ)

1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1

1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0

1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0

1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 4: Combined AQ matrix (CAQ)

4.2 FA Matrix:
The access frequency represents the sum of number of

accesses about query generated in one or more sites.

Figure 5 shows the access frequency of different queries by

different sites In QA matrix, A usage value of attribute Aj for

a query qi is defined as:

use(qi, Aj) = 1 if query qi accesses to

 Aj = 0 otherwise

www.manaraa.com

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.18, August 2012

32

S1 S2 S3

Q1 10 15 5

Q2 0 3 2

Q3 15 1 0

Q4 0 5 6

Q5 8 0 0

Q6 25 20 25

Q7 0 0 10

Q8 0 6 4

Q9 2 8 20

Figure 5: Access Frequency Matrix(FA)

The AA (attribute affinity) matrix is generated from the AQ

matrix using the same technique as relational vertical

fragmentation approach.

Attribute Affinity Matrix aff(Ai, Aj)

The attribute affinity represents the strength of bond between

the two attributes. The attribute affinity for two attributes Ai

and Aj defined as

aff(Ai, Aj)=k | use(qk, Ai) =1^ use(qk,Aj) =1acc (qk)

where aff(Ai, Aj) is affinity value between Ai and Aj, acc(qk)

is the total number of access of query qk generated in multiple

sites. Figure 6 and Figure 7 shows an example of AA matrix.

The AA matrix is needed to be clustered, and then becomes to

divide into attribute fragments. Bond Energy Algorithm

(BEA) is used to cluster the AA matrix. The algorithm is as

following:

Algorithm: BEA

Input: AA attribute affinity matrix

Output: CA clustered affinity matrix

Begin

{Initialize; remember that AA is an n x n Matrix}

CA(R∙ ,1) ←AA(R,1)

CA(R ,2) ←AA(R,2)

index←3

while index≤n do {choose the “best” location for attribute

AAindex}

begin

for I from 1 to index-1 by 1 do

calculate cont(Aindex-1, Aindex, Aindex+1)

end-for

calculate cont(Aindex-1, Aindex, Aindex+1) {boundary

condition}

location←placement given by maximum cont value

for j from index to location by -1 do {shuffle the

two matrices}

CA(R ,j) ←AA(R,j-1)

end-for

CA(R ,location) ←AA(R,index)

index←index+1

end-while

order the rows according to the relative ordering of columns

end.{BEA}

The purpose of clustering is to combine large affinity value of

AA matrix with large affinity values, and the small one with

small ones.

5. IMPLEMENTATION AND

COMPARISION
We have implemented the vertical class fragmentation

proposed in this paper using JAVA programming language on

an IBM-PC. The implementation was executed in the

following procedures.

First, establish the example structure of class schema and

example queries with the access frequency.

Second, generate the QA, AU matrix for all tables.

Third, for each table, generate AA and CA matrixes.

Fourth, partition the CA matrixes and make the attribute

fragments.

When we apply both BEA algorithm [16] and vertical

Partition algorithm [16] according to the Attribute usage

matrix and Attribute Affinity matrix we conclude to the

fragment results and selected one of the optimal solutions

available.

5.1 Testing Results
In this section we analysed the result. After applying

algorithm we find following result.

Query : Sum of Attribute access

q1: 30

q2: 5

q3: 16

q4: 11

q5: 8

q6: 70

q7: 10

q8: 10

q9: 30

Figure 6: Query Total Access Frequency

q1: A1 A10 A11 A2 A3 A4 A6 A7 A8 30

q2: A1 A2 A9 5

q3: A1 A2 A9 16

q4: A1 A2 A3 A9 11

q5: A1 A2 A3 A9 8

q6: A1 A2 A8 A9 70

q7: A1 A2 A3 10

q8: A1 A3 10

q9: A1 A3 30

Figure 7: Attribute Usage with frequency

 A1 A10 A11 A2 A3 A4 A6 A7 A8 A9

A1 190 30 30 150 99 30 30 30 100 110

A10 30 30 30 30 30 30 30 30 30 0

A11 30 30 30 30 30 30 30 30 30 0

A2 150 30 30 150 59 30 30 30 100 110

A3 99 30 30 59 99 30 30 30 30 19

A4 30 30 30 30 30 30 30 30 30 0

A6 30 30 30 30 30 30 30 30 30 0

A7 30 30 30 30 30 30 30 30 30 0

A8 100 30 30 100 30 30 30 30 100 70

A9 110 0 0 110 19 0 0 0 70 110

Figure 8: Attribute Affinity Matrix Subscr

In Figure 8, A10 comes after A1 it depends upon the bond

energy which can be calculated for individual column

randomly.

Calculate the contribution of the column depending on its

position:

www.manaraa.com

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.18, August 2012

33

5.1.1 Place attributes:

place A1

contribution at pos 0 = 20670

contribution at pos 1 = 85841

contribution at pos 2 = 83441

attribute A1 is placed at pos 1: [A4, A1, A2]

place A10

contribution at pos 0 = 8100

contribution at pos 1 = 8100

contribution at pos 2 = -44501

contribution at pos 3 = 18270

attribute A10 is placed at pos 3: [A4, A1, A2, A10]

place A11

contribution at pos 0 = 8100

contribution at pos 1 = 8100

contribution at pos 2 = -44501

contribution at pos 3 = 8100

contribution at pos 4 = 8100

attribute A11 is placed at pos 0: [A11, A4, A1, A2, A10]

place A3

contribution at pos 0 = 13110

contribution at pos 1 = 18120

contribution at pos 2 = 39491

contribution at pos 3 = 2741

contribution at pos 4 = 33971

contribution at pos 5 = 13110

attribute A3 is placed at pos 2: [A11, A4, A3, A1, A2, A10]

place A6

contribution at pos 0 = 8100

contribution at pos 1 = 8100

contribution at pos 2 = 8100

contribution at pos 3 = -13271

contribution at pos 4 = -44501

contribution at pos 5 = 8100

contribution at pos 6 = 8100

attribute A6 is placed at pos 0: [A6, A11, A4, A3, A1, A2,

A10]

place A7

contribution at pos 0 = 8100

contribution at pos 1 = 8100

contribution at pos 2 = 8100

contribution at pos 3 = 8100

contribution at pos 4 = -13271

contribution at pos 5 = -44501

contribution at pos 6 = 8100

contribution at pos 7 = 8100

attribute A7 is placed at pos 0: [A7, A6, A11, A4, A3, A1,

A2, A10]

place A8

contribution at pos 0 = 14400

contribution at pos 1 = 20700

contribution at pos 2 = 20700

contribution at pos 3 = 20700

contribution at pos 4 = 28890

contribution at pos 5 = 39719

contribution at pos 6 = 29699

contribution at pos 7 = 50100

contribution at pos 8 = 14400

attribute A8 is placed at pos 7: [A7, A6, A11, A4, A3, A1,

A2, A8, A10]

place A9

contribution at pos 0 = 9270

contribution at pos 1 = 10440

contribution at pos 2 = 10440

contribution at pos 3 = 10440

contribution at pos 4 = 19611

contribution at pos 5 = 34781

contribution at pos 6 = 28161

contribution at pos 7 = 36521

contribution at pos 8 = 32140

contribution at pos 9 = 9270

attribute A9 is placed at pos 7: [A7, A6, A11, A4, A3, A1,

A2, A9, A8, A10]

The order below leads to the highest bond energy.

resulting order: [A7, A6, A11, A4, A3, A1, A2, A9, A8, A10]

There are now several possibilities to split the table:

split quality (sq) = accesses(fragment 1) * accesses(fragment

2) - accesses(fragment 1 AND fragment 2)^2

5.1.2 Find fragments:

split at [A1, A10, A11, A2, A3, A4, A7, A8, A9] | [A6]

accesses frag1 alone: 160

accesses frag2 alone: 0

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A2, A3, A4, A7, A8, A9] | [A11, A6]

accesses frag1 alone: 160

accesses frag2 alone: 0

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A2, A3, A7, A8, A9] | [A11, A4, A6]

accesses frag1 alone: 160

accesses frag2 alone: 0

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A2, A7, A8, A9] | [A11, A3, A4, A6]

accesses frag1 alone: 91

accesses frag2 alone: 0

accesses frag1 and frag2: 99

split quality = -9801

split at [A10, A2, A7, A8, A9] | [A1, A11, A3, A4, A6]

accesses frag1 alone: 0

accesses frag2 alone: 40

accesses frag1 and frag2: 150

split quality = -22500

split at [A10, A7, A8, A9] | [A1, A11, A2, A3, A4, A6]

accesses frag1 alone: 0

accesses frag2 alone: 50

accesses frag1 and frag2: 140

split quality = -19600

split at [A10, A7, A8] | [A1, A11, A2, A3, A4, A6, A9]

accesses frag1 alone: 0

accesses frag2 alone: 90

accesses frag1 and frag2: 100

split quality = -10000

split at [A10, A7] | [A1, A11, A2, A3, A4, A6, A8, A9]

accesses frag1 alone: 0

www.manaraa.com

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.18, August 2012

34

accesses frag2 alone: 160

accesses frag1 and frag2: 30

split quality = -900

split at [A7] | [A1, A10, A11, A2, A3, A4, A6, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 160

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A2, A3, A4, A6, A7, A8, A9] | [A11]

accesses frag1 alone: 160

accesses frag2 alone: 0

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A2, A3, A6, A7, A8, A9] | [A11, A4]

accesses frag1 alone: 160

accesses frag2 alone: 0

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A2, A6, A7, A8, A9] | [A11, A3, A4]

accesses frag1 alone: 91

accesses frag2 alone: 0

accesses frag1 and frag2: 99

split quality = -9801

split at [A10, A2, A6, A7, A8, A9] | [A1, A11, A3, A4]

accesses frag1 alone: 0

accesses frag2 alone: 40

accesses frag1 and frag2: 150

split quality = -22500

split at [A10, A6, A7, A8, A9] | [A1, A11, A2, A3, A4]

accesses frag1 alone: 0

accesses frag2 alone: 50

accesses frag1 and frag2: 140

split quality = -19600

split at [A10, A6, A7, A8] | [A1, A11, A2, A3, A4, A9]

accesses frag1 alone: 0

accesses frag2 alone: 90

accesses frag1 and frag2: 100

split quality = -10000

split at [A10, A6, A7] | [A1, A11, A2, A3, A4, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 160

accesses frag1 and frag2: 30

split quality = -900

split at [A6, A7] | [A1, A10, A11, A2, A3, A4, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 160

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A11, A2, A3, A6, A7, A8, A9] | [A4]

accesses frag1 alone: 160

accesses frag2 alone: 0

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A11, A2, A6, A7, A8, A9] | [A3, A4]

accesses frag1 alone: 91

accesses frag2 alone: 0

accesses frag1 and frag2: 99

split quality = -9801

split at [A10, A11, A2, A6, A7, A8, A9] | [A1, A3, A4]

accesses frag1 alone: 0

accesses frag2 alone: 40

accesses frag1 and frag2: 150

split quality = -22500

split at [A10, A11, A6, A7, A8, A9] | [A1, A2, A3, A4]

accesses frag1 alone: 0

accesses frag2 alone: 50

accesses frag1 and frag2: 140

split quality = -19600

split at [A10, A11, A6, A7, A8] | [A1, A2, A3, A4, A9]

accesses frag1 alone: 0

accesses frag2 alone: 90

accesses frag1 and frag2: 100

split quality = -10000

split at [A10, A11, A6, A7] | [A1, A2, A3, A4, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 160

accesses frag1 and frag2: 30

split quality = -900

split at [A11, A6, A7] | [A1, A10, A2, A3, A4, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 160

accesses frag1 and frag2: 30

split quality = -900

split at [A1, A10, A11, A2, A4, A6, A7, A8, A9] | [A3]

accesses frag1 alone: 91

accesses frag2 alone: 0

accesses frag1 and frag2: 99

split quality = -9801

split at [A10, A11, A2, A4, A6, A7, A8, A9] | [A1, A3]

accesses frag1 alone: 0

accesses frag2 alone: 40

accesses frag1 and frag2: 150

split quality = -22500

split at [A10, A11, A4, A6, A7, A8, A9] | [A1, A2, A3]

accesses frag1 alone: 0

accesses frag2 alone: 50

accesses frag1 and frag2: 140

split quality = -19600

split at [A10, A11, A4, A6, A7, A8] | [A1, A2, A3, A9]

accesses frag1 alone: 0

accesses frag2 alone: 90

accesses frag1 and frag2: 100

split quality = -10000

split at [A10, A11, A4, A6, A7] | [A1, A2, A3, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 160

accesses frag1 and frag2: 30

split quality = -900

split at [A11, A4, A6, A7] | [A1, A10, A2, A3, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 160

accesses frag1 and frag2: 30

www.manaraa.com

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.18, August 2012

35

split quality = -900

split at [A10, A11, A2, A3, A4, A6, A7, A8, A9] | [A1]

accesses frag1 alone: 0

accesses frag2 alone: 0

accesses frag1 and frag2: 190

split quality = -36100

split at [A10, A11, A3, A4, A6, A7, A8, A9] | [A1, A2]

accesses frag1 alone: 0

accesses frag2 alone: 0

accesses frag1 and frag2: 190

split quality = -36100

split at [A10, A11, A3, A4, A6, A7, A8] | [A1, A2, A9]

accesses frag1 alone: 0

accesses frag2 alone: 21

accesses frag1 and frag2: 169

split quality = -28561

split at [A10, A11, A3, A4, A6, A7] | [A1, A2, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 91

accesses frag1 and frag2: 99

split quality = -9801

split at [A11, A3, A4, A6, A7] | [A1, A10, A2, A8, A9]

accesses frag1 alone: 0

accesses frag2 alone: 91

accesses frag1 and frag2: 99

split quality = -9801

split at [A1, A10, A11, A3, A4, A6, A7, A8, A9] | [A2]

accesses frag1 alone: 40

accesses frag2 alone: 0

accesses frag1 and frag2: 150

split quality = -22500

split at [A1, A10, A11, A3, A4, A6, A7, A8] | [A2, A9]

accesses frag1 alone: 40

accesses frag2 alone: 0

accesses frag1 and frag2: 150

split quality = -22500

split at [A1, A10, A11, A3, A4, A6, A7] | [A2, A8, A9]

accesses frag1 alone: 40

accesses frag2 alone: 0

accesses frag1 and frag2: 150

split quality = -22500

split at [A1, A11, A3, A4, A6, A7] | [A10, A2, A8, A9]

accesses frag1 alone: 40

accesses frag2 alone: 0

accesses frag1 and frag2: 150

split quality = -22500

split at [A1, A10, A11, A2, A3, A4, A6, A7, A8] | [A9]

accesses frag1 alone: 80

accesses frag2 alone: 0

accesses frag1 and frag2: 110

split quality = -12100

split at [A1, A10, A11, A2, A3, A4, A6, A7] | [A8, A9]

accesses frag1 alone: 50

accesses frag2 alone: 0

accesses frag1 and frag2: 140

split quality = -19600

split at [A1, A11, A2, A3, A4, A6, A7] | [A10, A8, A9]

accesses frag1 alone: 50

accesses frag2 alone: 0

accesses frag1 and frag2: 140

split quality = -19600

split at [A1, A10, A11, A2, A3, A4, A6, A7, A9] | [A8]

accesses frag1 alone: 90

accesses frag2 alone: 0

accesses frag1 and frag2: 100

split quality = -10000

split at [A1, A11, A2, A3, A4, A6, A7, A9] | [A10, A8]

accesses frag1 alone: 90

accesses frag2 alone: 0

accesses frag1 and frag2: 100

split quality = -10000

split at [A1, A11, A2, A3, A4, A6, A7, A8, A9] | [A10]

accesses frag1 alone: 160

accesses frag2 alone: 0

accesses frag1 and frag2: 30

split quality = -900

optimal split(s) (sq = -900):

[A1, A10, A11, A2, A3, A4, A7, A8, A9] | [A6]

[A1, A10, A2, A3, A4, A7, A8, A9] | [A11, A6]

[A1, A10, A2, A3, A7, A8, A9] | [A11, A4, A6]

[A10, A7] | [A1, A11, A2, A3, A4, A6, A8, A9]

[A7] | [A1, A10, A11, A2, A3, A4, A6, A8, A9]

[A1, A10, A2, A3, A4, A6, A7, A8, A9] | [A11]

[A1, A10, A2, A3, A6, A7, A8, A9] | [A11, A4]

[A10, A6, A7] | [A1, A11, A2, A3, A4, A8, A9]

[A6, A7] | [A1, A10, A11, A2, A3, A4, A8, A9]

[A1, A10, A11, A2, A3, A6, A7, A8, A9] | [A4]

[A10, A11, A6, A7] | [A1, A2, A3, A4, A8, A9]

[A11, A6, A7] | [A1, A10, A2, A3, A4, A8, A9]

[A10, A11, A4, A6, A7] | [A1, A2, A3, A8, A9]

[A11, A4, A6, A7] | [A1, A10, A2, A3, A8, A9]

[A1, A11, A2, A3, A4, A6, A7, A8, A9] | [A10]

Similar approach can be used for NARRATIVE relation and

we find the following solution. The following order leads to

highest bond energy

resulting order: [A6, A5, A3, A2, A4, A1]

and optimal split(s) (sq = 13180):

[A6] | [A1, A2, A3, A4, A5]

So following fragments has been selected with primary key

[16].

Fragments of Subscr

[A1,A11, A6, A7] | [A1, A10, A2, A3, A4, A8, A9]

Fragments of Narrative

[A1,A6] | [A1, A2, A3, A4, A5]

6. CONCLUSION
The purpose of conducting this study is to know the

comparative study of various vertical splitting techniques. We

know in centralized databases horizontal fragmentation is

widely used because of its ease of methods available. But

vertical fragmentation is rarely used to do the fragments .so

our study presents a view for ease of use of vertical

fragmentation.

www.manaraa.com

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.18, August 2012

36

Distributed databases have many aspects and every

organization has certain preferences. For the telecom sector,

the response time is prioritized.

Our experiment showed that the how to calculate the

fragments for different criteria used. In the distributed

database, data is fragmented. These fragments are short

compared to the full database (centralized database contains

maximum columns). However, when we need data from

multiple sites for a query (report queries), the response time is

increased. Accessing data from multiple remote sites and then

joining those takes long time. But in the centralized database

since data is at one place so, it is easy and fast to search it.

The purpose of conducting this study is to know the

distributed databases using vertical fragmentation. How to do

attribute distribution in vertical fragmentation?

Answer: This question is depending upon the data available

and algorithms available. Anyone can choose its data

according to heuristic approach. Based on algorithms

available for vertical fragmentation both type of databases,

and experiment was performed. Experiment results are

discussed in section 5 .We found that the response time is

decreased in distributed databases. Because, due to

fragmentation data set for single site contains less records

than centralized database, so response time is less.

7. REFERENCES
[1] Ceri, S. and Pelagatti, G. Distributed DatabasesPrinciples

and Systems. NY, McGraw Hill, 1984. .

[2] Ezeife, C. I. and Barker, K. Vertical Class Fragmentation

in a Distributed Object Based Svstem. TR 94-03, Univ.

of Manitoba DeRt. ofCbmputer Science, 1993.

[3] H.o ffer. 1. A.. and Severance. D. G. The Use of Cluster

Analysis in Physical Database Design.In Proceedings of

1st VLDB Conference, Mass., 1975.

[4] Karlapalem, K. and Li, 8. Partitioning Schemes for

Object Oriented Database. In 5th InternationalWorkshop

on Research Issues on Data Engineering: Distributed

Object Management, 1995.

[5] Karlapalem, K., Li, 8. and Vieweg,, S. Method Induced

Partitioning Schemes in Object OrientedDatabases. In

16th intemational conference on Distributed Computing

System, Hong Kong, 1996.

[6] Karlapalem, K., Navathe, S. B. and Morsi, M. M.A.

Issues in Distribution design. of object-oriented

databases, in Distributed Object Management, Morgan

Kaufmann Publishers, 1994.

[7] Lee, S. and Lim, H., Extension of Vertical Technical

Conference on Circuits/systems, Computers And

Communications, Japan, 1997.

[8] Navathe, S. B., Ceri, S. Wiederhold, G. and Dou,

J.Vertical partitioning algorithms for database design.in

ACM TODS 9(4), 1984.

[9] Farhi Marir, Yahiya Najjar, Mahmoud Y. AlFaress,

Hassan I. Abdalla, “An Enhanced Grouping Algorithm

for Vertical Partitioning Problem in DDBs

[10] Adrian Runceanu, Towards Vertical Fragmentation in

Distributed Databases

[11] Ashraf, Imran And Khokhar, A.S. 2010. Principles for

Distributed Databases in Telecom Environment.,

Sweden.

[12] Huang, Y.-F. And Chen, J.-H. 2001. Fragment

Allocation in Distributed Database Design.

[13] Mitchell , C. Components of a Distributed Database.

[14] Jonker, W. 2000. Databases in telecommunications:

international workshop co-located with VLDB-99,

Edinburgh, Scotland, UK, September 6th 1999:

proceedings. Springer, Berlin.

[15] Hvasshovd, S.-O. 1995. the clustRa telecom database:

high availability high throughput and real-time response

Proceedings of 21st VLDB Conference.

[16] Wiederhold, G., and Dou, J.,“Vertical Partitioning

Algorithms for Database Design,” ACM Trans.on

Database Systems, Vol. 9, No.4, Dec. 1984.

